Skip to content

搞英语 → 看世界

翻译英文优质信息和名人推特

Menu
  • 首页
  • 作者列表
  • 独立博客
  • 专业媒体
  • 名人推特
  • 邮件列表
  • 关于本站
Menu

试试 Ultrahuman 的睡眠和健身追踪环

Posted on 2023-02-18

印度初创公司 Ultrahuman 自 2019 年以来通过构建订阅健身平台而声名鹊起,该平台提供一系列锻炼和健康相关内容,并与 Apple Watch 等第三方可穿戴设备集成。 2021 年,它扩展到提供监测实时血糖的医疗级传感硬件——启动了一个项目,重点是鼓励用户跟踪他们的新陈代谢健康,作为一种健身干预。紧随其后的是,去年夏天,出现了更多硬件的预告片:它自己设计的智能环——补充现有的 CGM (连续血糖监测)传感器程序,但它也作为独立的健康追踪可穿戴设备提供,以与竞争对手竞争Oura 的智能戒指之类的东西。

TechCrunch 试用了 Ultrahuman’s Ring(或 R1)的 Beta 版,正如它的名字一样——将其与基于 CGM 的代谢跟踪程序(M1)结合使用进行了一个月的测试,并单独测试了数周,而当时它还没有访问实时葡萄糖数据。所以这里其实有两种复习场景:The Ring + CGM;和戒指。 (我们之前已经自行测试了 Ultrahuman 基于 CGM 的程序——点击此处阅读我们去年关于 M1 的报告。)

对于那些还不熟悉 CGM 的人来说,这些是直接佩戴在身体上的部分侵入式传感器——包含一根插入皮肤下的细丝,使硬件能够通过佩戴者的间质液感知血糖的变化。

Ultrahuman Ring 则不同:所有传感器都完全包含在智能戒指的主体中,并且仅使用光学传感等非侵入性技术来跟踪用户的生物标记。绝对不需要皮肤穿刺。

然而,如果你准备同时佩戴 Ring 和 M1,Ultrahuman 的宣传是你将获得更深层次的健康追踪,因为它的平台能够链接更多的生物标志物,并更详细地描绘你的生活方式如何影响你的新陈代谢健康。

虽然追踪血糖最常与患有糖尿病或前驱糖尿病的人联系在一起,但近年来,一波初创公司一直在将 CGM 技术商业化,以实现更普遍的健康追踪和/或健身目的——创造一种新的“生物可穿戴设备”类别。这里的重点是努力提高对饮食、睡眠和锻炼等生活方式因素如何影响长期健康结果的理解。由于对不同食物和活动的新陈代谢反应因人而异,因此这种跟踪的承诺是为用户提供一种工具,以了解他们自己的新陈代谢如何应对他们投入的任何东西——帮助他们去超越通才健康建议协议,真正过上最好(最健康)的生活。

概述

作为一款独立的可穿戴设备,Ultrahuman 对 Ring 的宣称是它提供了“深入”的新陈代谢洞察——利用来自嵌入式温度传感器、PPG 传感器和运动感应 IMU 的数据,加上它自己的算法处理来跟踪可能影响新陈代谢的三个因素——即:睡眠、压力和运动(或者,更具体地说,活动分布;所以本质上它是在监测你的久坐程度或其他情况)。

Ultrahuman 表示,Ring 的电池一次充电可以使用 4-6 天——但警告说这“在很大程度上”取决于环境温度、使用频率和电池寿命等因素。在测试中,我发现电池寿命趋向于该范围的下限。智能戒指附带一个可插入 USB 端口的充电座。根据 Ultrahuman 的说法,电池充满电大约需要 1.5-2 小时。我发现从平板充电大约需要 2 个小时。

当 Ultrahuman 的两个传感硬件组合佩戴时(即 Ring + CGM),这家初创公司提高了音调——称佩戴者可以获得“真正个性化”的洞察力。这在实践中意味着它能够在血糖波动和 Ring 追踪的生物标志物之间建立关联。例如,它说它可以发现夜间睡眠不佳是否会导致更差的葡萄糖反应。然后,如果它注意到用户没有随着时间的推移纠正他们的睡眠,该应用程序可以向他们发送轻推以鼓励行为改变以优先获得优质睡眠。

因此,该应用程序真正成为体验的核心,与硬件一起工作以呈现佩戴者的生物标记数据,并根据这些算法相关的“见解”和建议。它显示了葡萄糖水平变化的实时图表以及每日代谢评分(在 CGM 的情况下);和/或运动、恢复和睡眠的一组总分(在 Ring 的情况下)。

再深入一点,后三个指标由一系列“得分贡献者”或生物标志物数据点提供,例如“睡眠效率”、“运动指数”、“静息心率”和“恢复时间” , 仅举几例。在恢复和睡眠指数的情况下,这些得分贡献者各自在应用程序中单独得分;显示为绿色和完整(“最佳”)的线条;橙色和中等(“好”);或红色和低(“需要注意”)。您可以点击每一项以快速了解它们的含义以及为什么该措施对您的新陈代谢健康很重要。您还可以在每个索引中进行回溯,以查看您所有的每日分数随时间的变化情况。

超人指环

图片来源:Natasha Lomas/TechCrunch

还有更多的数据点:恢复指数显示您的最低心率和全天绘制的平均值(以 BPM 为单位);连同显示心率变异性 (HRV) 的图表,平均值和最大值被分解为单个数据点。虽然运动指数打破了步数(以及它们在一天中发生的时间的图表); MET 中的活动(又名代谢当量),它是衡量您的能量消耗率的指标(再次绘制随时间变化的图表);活跃时间(以及它们发生的时间);总卡路里(一天的估计能量消耗);和你的锻炼频率。

睡眠指数更多的是数据点:打破床上时间的指标;总睡眠;效率;平均心率;平均 HRV(除了将六个单独的得分贡献者分解为得分视觉条形图)。它还显示(在撰写本文时仍为测试版功能)平均氧饱和度(或 SPO2)占 100% 的百分比(越高越好);睡眠阶段(清醒;REM 睡眠;轻度睡眠;深度睡眠)——以及分解您在每个阶段所花费的比例并在图表中显示这些,以便您可以看到每个不同阶段在您睡眠时发生的时间。

此外,睡眠指数会计算并映射运动(因此它会跟踪您进行了多少次辗转反侧);显示您在睡眠期间的最低心率和平均心率,以及显示夜间波动的折线图; HRV(平均值、最大值和映射变化的图表);和您的体温(也作为平均值和折线图)。

“环”选项卡还在最上方突出显示您当前的 HRV(+/- 偏离平均值的点数)和您的体表温度,即用户无需深入查看特定指标即可查看这些指标。在其他地方,如果您想在公共场合量化您的新陈代谢健康状况,还有一个按钮可以以社交媒体友好的视觉卡形式分享索引概览。

如果这一切听起来很像数据转储,那绝对是。但该应用程序的跟踪演示至少突出了三个(专有)总分(运动、恢复和睡眠)——让您一目了然地了解您在寻求更好的新陈代谢健康方面的表现。

它还提供简短的、基于文本的摘要,直接显示在这些指数分数下,以引起您对重要数据点的注意,并为您可能采取的提高分数的行动提供建议。因此,如果您不厌其烦,则不必进行深入研究以查看所有贡献者数据点的工作。

例如,如果您那天的恢复分数较低,该应用程序可能会建议“这是进行长距离散步并尝试进行非睡眠深度休息的好日子”。或者,如果您的睡眠分数有点低,它可能会促使您“尝试多睡一点以改善您的恢复和表现”。 (更多的睡眠?但愿如此!)或者,如果您一直努力避免久坐不动,它可能会通过观察您的运动指数“表明一致性”来奖励您——而“一致性是身体健康的关键!”。那你去吧!

但如果你去寻找,应用程序中肯定有更精细的数据——所以该产品在设计时也考虑到了坚定的生物黑客。

外形尺寸和设计:戒指就是……

任何熟悉《指环王》情节的人都会告诉你,戒指可能是很棘手的东西——人们习惯于在手指上滑落,甚至滑落。

Ultrahuman 的戒指也不例外。高度抛光的内表面意味着它适合(哈!)尽管有一个厚实的形状,但它有点滑。这家初创公司在发送产品本身之前确实会提供一个尺码套件,因此您可以测试不同的尺码选项,以尝试找到贴身但舒适的尺码。然而,这些沉闷的塑料假人比实际的 Ring 粘得更紧。所以我发现我选择的尺码在真正到位的时候在预期的手指上有点松。

尺码套件建议在食指上测试假人。然而,实际上我很多时候都把戒指戴在拇指上,因为指关节的自然隆起有助于保持它,而且无论我做什么,它都不会妨碍我。它在这里看起来(和感觉)很好,所以这在美学上不是问题。但我担心它可能会影响数据捕获。

我问 Ultrahuman 关于将戒指戴在拇指还是手指上的问题,它告诉我这个数字不是最佳选择:最好是食指、中指或无名指。但它也确实表示,他们已经看到“许多用户”在他们的小指或拇指上“准确无误地”佩戴它。 “在手指之间切换时,只有当手指上的戒指松动并且不符合预期时,才会出现数据质量问题;建议紧密贴合以获取准确的数据,”它补充道。

当然,手指本身也是棘手的事情——肿胀或收缩取决于它的冷暖程度。还有额外的挑战,因为人类的手经常暴露在各种其他条件下。因此,这些环境变化自然会影响戒指的佩戴。结果是一些持续的变化——根据那天或那一刻周围发生的事情,戒指感觉更舒服或更放松。因此,我已经习惯了需要在手指之间交换它以寻找最合适的(或者避免它妨碍我正在做的事情)。

对于家务活(清洁、切碎和洗蔬菜做饭等)和某些形式的锻炼(例如举重),戴在拇指上似乎侵入性最小(即使这不是采集数据的最佳位置)。对于像攀岩这样的专业活动,我实际上不得不完全移除它——因为你只是不想让任何东西进入你的皮肤和攀岩墙之间(当然不是一个厚实的、容易刮伤的环)。因此,根据您的生活方式,并不总是能够持续跟踪。

超人指环

图片来源:Natasha Lomas/TechCrunch

如果您觉得有时必须完全取下戒指,一个更实际的问题是,当您不戴戒指时,不仅不会记录任何数据,而且当您摘下戒指时,您可能最终会忘记把它放在哪里——有风险如果你放错了它,就不会丢失它。取下它后,我肯定对我把它放在哪里感到害怕。 (而且,我的意思是,只要问咕噜关于那个宝贵的问题……)

因此,总的来说,我觉得腕戴式外形(即手环或手表)可能比智能戒指有更多优势——对用户的干扰较小(即使身体更大);减少暴露在环境中(定期洗手、保湿等);并且丢失的风险较低(因为白天不需要完全移除它)。腕带也——IMO,作为 Apple Watch 的拥有者——更适合运动追踪,因为它们不太可能妨碍你正在进行的任何活动(投掷、举重、拉动、游泳等),因为他们自然地更安全地坐在身体上。

它们似乎也不太可能因剧烈运动而受损,因为手腕比手更容易受到保护。

健身追踪器以手环起家并接管智能手表类别似乎并非偶然。因此,对于以健身为重点的健康追踪器而言,环形外形似乎确实有点偏左。毕竟,传统上,戒指在很大程度上具有装饰作用。或者,好吧,存在是为了表示某种类型的关系。智能硬件通常不会因其美学品质而受到重视。因此,除非您追求外观更具装饰性的计步器/睡眠追踪器,否则智能戒指似乎不是用于此目的的明显选择。

当然,从商业角度来说,你可以理解为什么初创公司不热衷于与 Apple Watch 这样的重量级选手在手腕上进行较量。因此,智能戒指硬件为初创公司提供了开辟健身追踪利基市场的机会,至少可以补充(如果不能完全取代)更多主流可穿戴设备。 (而且越来越多的新来者正在做出聪明的指环移动——例如,参见Movano Health 的计划,以女性为中心的手指安装追踪器。)

除了形状因素保留,Ultrahuman 的戒指看起来确实很漂亮,因为这种厚实的珠宝。

我正在测试的 Ring 的金色版本看起来和感觉都很好(撇开光滑不谈)。它有点笨重,但我的手很小,所以你的带宽可能会有所不同。

有多种颜色和饰面可供选择——包括一些看起来很吸引人的黑色和银色选项——以及一种微妙的几何图案,可以将“顶部”与乐队的其他部分区分开来,而不会使它变得挑剔或明显性别化。这家初创公司表示,戒指由钛制成,带有“防刮擦”碳化钨涂层。这种外部金属涂层无法避免刮擦——经过数周的佩戴,您期望在一件金属首饰上形成的那种铜绿会适时出现。但是,在我看来,这并没有影响整体外观。

硬件设计看起来也很稳健,能够巧妙地处理人类手中不断变化的需求——并产生最小的连接问题(但预计在早上重新连接和卸载数据时会有短暂的延迟)。所以我对可靠性或硬件的外观没有任何大的质疑。相反,智能戒指作为一种外形因素让我对这种以健身为中心的用例的相对功能效用提出了疑问。

对于一些非常活跃的人来说,腕戴式追踪器在大多数时候可能是更实用的选择。 (例如,像 Whoop 这样以运动员为中心的游戏已经转向手腕也就不足为奇了。)也就是说,由于戒指比腕带或手表小,所以对于某些人来说,睡在里面可能更舒服。而且对于那些正在寻找睡眠追踪可穿戴设备的人来说,Ultrahuman 的 Ring 可能比更笨重的手环更适合他们。 (这不是我自己戴 Apple Watch 过夜的经历,但是,好吧,这些都是主观的考虑因素,所以什么有效或无效可能取决于人。)

我有点担心戒指可能会在晚上夹到我的手指——考虑到体温(尤其是女性)会发生变化,这可能意味着手指有时会在睡觉时有点肿胀。我确实注意到它在早上似乎更合身。但是,再一次,我觉得我可以通过在一夜之间选择更薄的数字来解决这个问题。因此,同样,只要这不会对数据一致性造成影响,就有办法解决这种适合性问题。

关于外形的另一件事:Ultrahuman 建议其 Ring 可以比 Apple Watch 更准确地记录心率等生物标记,因为它的传感器更频繁地采取措施。可穿戴设备捕获的生物识别数据的准确性是特定于设备的,并且是一个持续争论的领域——因此在得出任何确定的结论之前可能需要进行更多的研究——但正如它还指出的那样,准确性可能取决于当时戒指的佩戴程度,考虑到多变的现实世界条件,数据捕获的“质量”似乎也可能发生变化。这增加了此类比较的复杂性。

作为超人“半机械人”的四个星期

性能和用户体验

戒指+CGM

我在 2021 年对 Ultrahuman 基于 CGM 的代谢健康追踪计划进行了道路测试,这是我在2022 年 1 月的评论中写下的经历(对于那些在使用 CGM 深入研究健康追踪之后的人),我对这种组合寄予厚望Ring + CGM 意味着平台可以提供新陈代谢的见解。我在之前的评论中指出的一个问题是该应用程序无法自动区分运动引起的血糖峰值(在手动记录您的锻炼时,该应用程序会通知您是“良好”峰值)和与运动相关的血糖峰值食物(坏尖峰)。

问题在于,虽然手动记录锻炼——或与其他可穿戴设备(如 Apple Watch)集成以同步你跟踪的锻炼——为应用程序提供活动正在发生的信号,但它仍然可能对你最近吃的一餐给出低分由于您在目标最佳血糖范围内花费了多长时间(即使尖峰是由于剧烈运动,而不是因为您吃的东西),因此接近锻炼。

鉴于 Ring 可以感知运动,我希望跟踪能够更智能地区分锻炼触发的尖峰和食物相关的尖峰。结果,它似乎仍在为此苦苦挣扎。例如,我发现,在接近高强度锻炼时进食的食物通常仍会导致得分低于其他情况,因为锻炼后血糖升高会导致“超过目标时间”(负面指标),而不管锻炼的质量如何食物的选择。

当然,运动并不是导致血糖飙升的唯一其他潜在诱因。睡眠不佳和压力会升高血糖(显然,这两者都不好)。但在测试过程中,我什至注意到血糖可能会因简单的环境温度变化而升高。例如,在寒冷的房间里换衣服可能会导致血糖大幅升高,应用程序会警告我需要“行动起来”,因为关键指标会超过 120——而最佳血糖会促使你去尽量维持在 70-110 mg/dL 之间。

当被问及理解好与坏尖峰的挑战时,Ultrahuman 联合创始人 Mohit Kumar 同意这是一个“棘手”的领域——将其描述为“有点需要解决的启发式问题”。 “就我个人而言,我也对我们无法区分这两件事的能力感到不满意,”他告诉 TechCrunch。 “所以我们必须试一试,看看——人们的反应如何?”

Kumar 建议团队可能探索的一种方法是围绕这些类型的事件调整代谢评分——但警告说只有当用户准确记录他们的食物摄入量时,评分才会准确。或者只为那些彻底记录食物的人提供这种适应,以避免降低平台对普通用户的整体准确性的风险。

在食物记录方面,可以公平地说大多数用户不太可能完全准确地做到这一点。首先,因为记录你消耗的一切都是乏味的。但是,除此之外,也不可能总是完全准确地了解您所吃的食物——要么是因为您所吃的确切食物并未列在应用程序的清单中(并且自定义食物条目不会是应用程序所提供的结构化数据)可以自动解释);或者您不知道所消耗的每种成分的确切数量。 (该应用程序有一个显示“总宏量”的部分——当你记录一天的膳食时,它会计算累积的卡路里、蛋白质、脂肪、碳水化合物和纤维——但它为我显示的数字从来都不准确,因为我没有称重和输入我单独吃的每一种成分。)

除此之外,您甚至可能不知道所吃食物的所有成分。您没有准备的饭菜可能会充满各种意想不到的添加物——因此,如果您经常外出就餐、外卖或吃预先准备/包装好的饭菜,那么记录食物可能会更具挑战性。 (如果测试 CGM 教会了我任何东西,那就是酱汁通常是隐藏的含糖成分的雷区。)

结果是,您可能不会想到对葡萄糖稳定性不利的膳食仍然会让您大吃一惊。这也是为什么在 M1 + R1 场景中,即使访问的数据比以往任何时候都多,在算法上仍然难以确定血糖升高的好坏。因此,为什么这仍然是 Ultrahuman 的一项正在进行的工作。

Ring 为 M1 血糖跟踪体验增加了什么?除了获得一个充满 Ring 生物标志物数据的全新标签之外,该应用程序还将额外的通知融合到主要的代谢跟踪时间轴中。

例如,它可能会因“今天非常活跃”而在背后给予肯定的拍手,或者对“实现 10,000 步的步数目标”给予更大的赞扬。或者它可能会告诉您“心率过早下降”(在睡眠期间)——观察到“有助于改善睡眠质量和恢复”。或者,如果您饭后去散步并且积极运动有助于控制食物飙升,它可能会弹出来为“将代谢分数保持在目标区域的出色工作”竖起大拇指。或者,另一方面,如果您在办公桌前辛勤工作几个小时,久坐不动,它可能会提示:“是时候该移动了吗?”,并提示“经常移动有助于改善血液循环和精力充沛”平衡”。

其中一些轻推感觉与您在 Apple Watch 等主流可穿戴设备上发现的东西非常相似——例如,它有一个功能,可以轻拍您的手腕,鼓励您站起来走动一下小时。因此,该应用程序的一些更基本的“活动针刺”通知的有用程度可能取决于您是否已经拥有智能手表,因为可能存在一些重复的功能。

然而,Ultrahuman 的应用程序还发送了一些更有趣的复合通知——例如上面的通知,它将饭后散步与积极控制血糖峰值联系起来——这与主流可穿戴设备明显不同。这就是(数据)挖掘的附加值——如果它可以连接更多的点,并在用户的生活方式和改善的血糖调节之间建立准确和可操作的相关性。

一款能够巧妙地将生活方式因素与新陈代谢结果联系起来的可穿戴设备似乎更有可能成功地激励用户做出行为改变,随着时间的推移,这些行为改变会对健康产生巨大的积极影响。因为,正如我们所知,仅仅告诉某人做某事往往不会得到很好的回应。但是,如果你以一种方式推动他们,向他们展示他们所做的事情所导致的结果,这可能会导致一个灵光一现的时刻,在这个时刻,人们会受到启发,为自己做出改变。这是这里瞥见的真正巨大的承诺。

我说承诺是因为 Ring + CGM 还为时过早。 Ultrahuman 的通知和轻推方法显然仍在进行中(产品路线图显示了一系列即将推出的功能,甚至还有一些新的和尚未公开的生物标记)。

但如果他们能继续下去,处理数据并更紧密地关联生活方式选择和血糖波动——并利用这些见解设计更多更明智的推动措施,帮助人们了解他们生活方式的影响(好的和坏的)对他们的健康——该计划在这种类型的健康追踪的力量上实现变革性步骤的潜力看起来很大。

不过,他们还没有到那儿。目前,许多Ring 的 ping 看起来比组合起来更抽象,而且通常不清楚用户应该如何响应。

例如,上面关于睡眠早期心率下降的说法听起来不错,但我不知道我应该怎么做才能让这种情况发生。或者,因此,我应该如何回应那一点积极的反馈——除了,嗯,只是继续?因此,用户体验有时会感觉很被动——“哦,知道这很好(或不太好),但现在怎么办?”一种方式。

很明显,最有效的行为推动将是那些通过向人们展示他们必须影响自己的结果的机构来积极吸引人们的行为推动。与此同时,毫无疑问,这需要付出多么复杂的努力,因为如此多的因素可以促进(或减少)健康。

我们对身体炎症与长期健康之间相互作用的了解程度也有限。甚至解释个体代谢生物标志物也可能具有挑战性——例如 HRV,这是一种基于跟踪心跳之间时间的敏感指标,旨在量化自动神经系统的性能,并作为身体压力、休息和恢复的生物标志物,但它也可以受慢性炎症和疾病的影响,因此了解如何解读“低”HRV 分数并不简单)。

代谢健康当然有其自身的一系列特殊考虑和挑战。重要的是要注意,对于没有特定医疗需求的普通消费者来说,跟踪他们每天的血糖波动的价值仍然存在一些怀疑。因此,一款旨在推动各种人改变生活方式的潜在有益产品——随着时间的推移,这可能会对他们的整体健康(或“长寿”)产生有意义的积极影响——必然是在设计最佳方法的过程中为所有类型的用户实现光学效果。

显然,这段旅程也是一种平衡行为。 (或者当你在生活中投入其他通常对用户的时间和思想不太有益健康的需求时,甚至是一种杂耍行为。)因此,随着推销的进行,迭代和适应是推动“解码”代谢健康的一部分。 .

快速呼唤 Ultrahuman 的应用程序还通过文本聊天供您使用的(人类)“性能教练”。

这些运动科学家和运动生理学家——自称获得了“NSCA-CSCS 认证,在训练精英运动员、设计运动表现和康复训练计划方面拥有多年丰富经验”——会在你驾驭血糖的高低时回答问题追踪。而且,如果您同意,他们可以分析您的 CGM + Ring 数据以建议一些个性化的生活方式生物黑客。

一个例子:我与一位名叫 Mugdha 的教练有过一段很棒的经历,他很聪明地找出了为什么我经常在午餐和晚餐后出现血糖飙升的原因——我认为膳食是均衡和健康的(由天然食物制成,含有大量来自蔬菜的纤维)加上良好的蛋白质来源)所以应该意味着我保持在最佳范围内。问题是我每顿饭后都吃一块水果,这让我超出了目标范围,后来引发了一系列葡萄糖崩溃。

我们无休止地被告知水果对我们有益,所以我什至认为这不是问题。事实证明你吃水果的方式很重要:教练建议的简单生物黑客是不要在正餐时吃水果;而是尝试将其作为两餐之间的零食。这个微小的变化不会对我的生活方式产生实质性影响,但它对我的进餐次数产生了可量化的影响——因此,有助于提高我的整体新陈代谢分数。这是非常疯狂的——或者,呃,香蕉! – 当你想到它的时候。

同样有趣的是,训练有素的人(而不是人工智能)在我的数据中发现了这个问题并提供了这个超级简单的修复。

另外一些有趣的观察:佩戴 M1 时,我借此机会对一些标榜为健康的食物进行了路测,以了解我自己的新陈代谢对它们的影响。即: Beyond Meat香肠(肉类的素食替代品)。 Huel的热咸味“即食餐”(总部位于英国的 Soylent 竞争对手)。还有(不)著名的生物黑客布莱恩约翰逊的早餐和晚餐食谱——他开放了他所有的数据来源,作为他通过表观遗传年龄逆转(或者,嗯,尽可能接近重建)寻求长寿的数百万美元的一部分他的Nutty Pudding和Super Veggie——将后者缩小到更适合普通人午餐的份量,比如少 3 倍)。

我对 Beyond Meat 香肠有不错的新陈代谢反应,吃了其中一种(主要是豌豆蛋白)纯素香肠,配以蒸炒新鲜蔬菜。尽管该应用程序将这顿饭与我之前进行的高强度锻炼相结合,但我的血糖水平有所升高——这意味着该组合仅得分 5/10(由于葡萄糖升高 31 mg/dL,这让我在 36 分钟+ 的范围之外) ).不太好:Huel 的墨西哥辣椒——单独食用,因为如果你有 2 勺的话,它被认为是一顿完整的饭——它导致葡萄糖升高 41 mg/dL,这让我在至少 70 分钟内超出范围,这道菜获得 3/应用程序中的 10 分。我想谷物中的高碳水化合物含量是触发我的原因。尽管如此,它并不像真正的墨西哥食物那么糟糕:我吃的一顿外卖餐,包括鳄梨酱和玉米饼片以及素食炸玉米饼,在导致 96 分钟以上超出范围后,脂肪含量增加了 68 毫克/分升,得分为“0” .所以,呃,吃玉米片要自担风险!

Bryan’s Nutty Pudding 在应用程序中获得了两个分数,因为它最初是自己评估的(6/10,40 mg/dL 的上升让我超出范围 10 分钟以上)。不久之后我喝了一杯绿茶后,它又修改了分数——由于“葡萄糖变化最小”,该组合得分为 10/10。但是,这再次说明了试图将血糖变化这样相对简单的事情与特定膳食联系起来的复杂性。 On balance I think the more accurate score there is the lower one — whereas my own chia pudding breakfast concoction reliably scored higher than 6/10 (so feel free to ping me for the recipe Bryan!). The Super Veggie dish was, perhaps surprisingly, a low scorer (4/10 on a 46 mg/dL rise that kept me out of range for 38 minutes+). But I have found that lentils do seem to spike for me. I would probably have a better response if I dialled back the proportion of lentils and ate more of the other veg… All of which is to underline how insanely personal all this stuff is! Or: What’s good for Bryan won’t necessarily be optimally metabolised by someone else.

It’s also important to remember that a meal is not just food; it’s fuel. So if you’re going to be active after eating you might want to load up on carbs to ensure you are properly energized for your workout. Whereas for desk workers stuck in a chair it’s the opposite scenario. And in the former case Huel, for example, might be a great choice for an energetic pre-workout meal. Basically, you can’t just look at meals in isolation. It depends what you’re going to be doing throughout the day. Hence why tracking and quantifying lifestyle for health and fitness needs to span a variety of factors.

One future scenario for Ultrahuman’s platform might be that it gets smart enough to be able to make increasingly contextual suggestions and do so more pre-emptively than it can now — so, for example, not just nudging you to “get movin’” as your glucose shoots out of range but maybe even popping up at the point where you’re logging your food to say: ‘Hey, this dish looks like it’s going to give you an real burst of energy — so think about pairing it with a workout!’.

As it stands, you do still have to do a lot of the leg work of navigating how to respond to the data yourself if you want to get the most out of the CGM experience.

Ultrahuman Ring

Image credits: Natasha Lomas/TechCrunch

Just the Ring

You don’t need to be wearing a CGM to make use of Ultrahuman’s Ring; it can also function as a standalone health tracker. But in this scenario it’s a lot more vanilla — since there’s no on-board glucose tracking. The focus for the smart ring is on tracking rest and recovery, as well as keeping tabs on how sedentary you are — so the functionality may be of interest if you’re either A) not very active (and have low energy levels) and want help to improve that. Or B) if you’re active and are looking for a device to monitor how well rested you are and also to help with programming your training.

Clearly, there’s plenty of competition for both these scenarios — from the Apple Watch to rival smart rings like Oura’s — so Ultrahuman’s Ring alone definitely loses a differentiating edge. And, personally, in the case of the activity tracking use-case, I’m not sold on a smart ring form factor vs using a wrist band or watch, as discussed above. But others may prefer a smart ring — which lacks a distracting screen of its own.

On the activity tracking side, you get Fitbit-like movement tracking features (steps, activity and workout mapping etc) plus some Apple Watch-esque nudges (via in-app pings) which are designed to work against being too sedentary.

The Ring’s Recovery feature is intended to function as a daily guide to training — offering a summary for how hard to push in your workouts based on how well rested and recovered it reckons you are. Although more athletic users are likely to prefer something more granular and powerful for workout tracking — such as a more athlete-focused tracker service, like Whoop.

I’m not entirely convinced of the usefulness of a ‘digital coach’ feature. Especially as, in the Ring’s case, it seems super light touch — offering very broad-brush advice — to push harder that day, or “proceed as planned”, or take it a bit easier — rather than serving up more tailored and specific training or recovery recommendations. And being as it’s so general, most of the time, you’re surely going to be able to go with your gut feeling, vis-a-vis how much energy and pep you have on a given day or how tired you feel — so I question why you need an app to tell you how your body already feels?

So my sense here is the average user may struggle to find a great deal of standalone utility in the Recovery Score feature — unless they value the personalized notification as a motivator for exercising more. Or they’re taking the time to drill down and monitor changes to Recovery score contributors in a way that helps them diagnose why they’re feeling less up for it than usual on the running track etc (and use the data-points to course correct, by getting more sleep etc).

Although, again, a simple hack we all know for improving our recovery is to just get more sleep. And you don’t need a tracker to do that.

The area that seems to be the biggest focus (currently) for Ultrahuman with the Ring is sleep tracking. As noted above, this section of the app is very data heavy. During the testing period it also added an additional biomarker: SPO2 — for overnight blood oxygen tracking — so it’s evidently keen to keep expanding what it’s offering here.

The goal may be to put some clear blue water between the Ring and other mainstream wearables like the Apple Watch, which offers a far more basic sleep-tracking experience. So if you’re really focused on quantifying how well rested you are (or are not) — and on trying to figure out exactly what’s getting between you and the good Zzzs — Ultrahuman’s data-heavy approach may be a lure.

It does make sense for the startup to want to hone in on sleep for the other part of its hardware play (the CGM-based tracking) given the key role sleep plays in glucose regulation (and indeed in Recovery) — and therefore to overall metabolic health. However I do have a bit of a reservation over the granularity of the sleep tracking if you’re just using the Ring.

Firstly, for the average user, it might just feel a bit much — and even a bit stressful. And that could end up being counterproductive to the overall health mission.

Secondly, it’s not necessary in our gift to get more sleep than we already do. So receiving regular nudges about the need to get more (and better) shut eye are not necessarily very useful. Most of us probably know we should get more sleep and would surely love to be able to spend more time resting in bed if we could. But the demands of work and life do tend to get in the way. Which is why we end up burning (at least) one end of the candle more often than we’d like.

Sadly, it would require a lot more than the odd in-app nudge to fix society’s chronic sleep deficit problem. (A wealthy patron who could fund our lifestyle without the need for us to work, say. Or children (and pets) who sleep soundly through the night — and/or a partner who never snores. Or a city that actually sleeps. And so on… )

So, well, do we really need an app nagging us about something we likely know but can’t necessary change? And, well, waking up to a daily sleep score that’s not optimal can just feel bad and stressful. So is this kind of granular tracking really the ideal way to encourage better quality rest and recovery? I’m not 100% convinced.

That said, I suspect it this depends on the person. Some people may thrive from being able to analyze all sorts of sleep metrics — and on trying to self-diagnose and remove particular barriers standing between them and better rest. While others may just feel overwhelmed.

Ultrahuman’s philosophy, generally, is geared toward arming users with ample data (those aforementioned Sleep Index score contributors in this case) to encourage them to do the work of trying to connect biomarkers to lifestyle choices and so figure out how to edit their life to try to optimize their scores. But of course not everyone is going to engage with such a data-driven approach. And, clearly, a data-loving biohacking community is more likely to want to dig it and geek out than a general interest consumer — who wants and expects a lot more hand-holding (and even heavy lifting) from their products.

Another issue with the Sleep Index is it can feel especially abstract — in that it can be difficult to know exactly what’s been referred to, let alone how you might go about correcting any poor scores you’re getting. (Beyond the obvious fix of just getting more sleep.)

So, for example, if the app suggests your “sleep efficiency” or “timing” is a problem that “needs attention”, presumably that refers to A) how long you spent actually sleeping while in bed vs time in bed; and B) when you went to bed vs the optimal window based on circadian rhythm. But, well, 1) it’s probably not immediately clear to an average user what those labels mean; and 2) as noted above, even if you drill down into the explainer to try and figure it out few users might feel they have heaps of human agency to fix either of those types of sleep disruption issues. (Not in this hectic life anyway… as the saying goes: ‘I’ll sleep when I’m dead.’)

Another example is temperature which also feeds the overall Sleep Index score. The app regularly informed me my temperature was elevated but it was impossible to know what to do with this information. I didn’t feel ill or have a fever so I was left wondering if the hardware and algorithms were properly calibrated for women (as women tend to have more body temperature fluctuations than men).

Ultrahuman told me they have done “a small adaptation” for women — to account for this greater temperature variation factor. So I even got to wondering whether something environmental, like extra layers of winter bedclothes, might be contributing to these elevated temperature scores. I never figured out exactly what was going on. The app’s vague suggestions for possible caused never seemed to fit. So it remained a bit of a mystery.

The startup told me the Ring actually takes two temperature measures: Ambient temperature and skin temperature, which it uses to try to deduce core body temperature — which it’s tracking so it can offer features like fever detection but also because it says temperature can be an important marker for health in terms of inflammation related to recovery.

It told me elevated temperature can be a signal of over-training. Or it could be linked to a thermodynamic effect of food (or alcohol, although I wasn’t drinking at all during the testing phase so could discount that). Or to lack of sleep… So, in short, it’s complicated!

Ultrahuman recommended the metric is used in conjunction with other biomarkers the app tracks to try to narrow down whether there’s an “actionable” insight to be had off-of a “needs attention” reading on it or not… But, again, I wasn’t able to figure out what it might be linked to in my case. And the example underlines the challenge of intelligently interpreting so much data. (Temperature is just one of some ten or so biomarkers feeding the three Indexes — so there’s a lot of potential linkages and amplifications to consider).

The upshot, for an average (most likely under-rested) Ring user, is the Sleep index can be a frustrating part of the app. And frustration can generate stress which can negatively impact metabolic health and sleep itself… So there could be a risk of over-tracking itself being counterproductive to the healthy-purpose the product is shooting for.

The same can be true for food tracking, via the M1, too of course. But at least when it comes to food there’s more bandwidth for making small tweaks (even just to the timing of meals, as with the fruit example discussed above). Plus Ultrahuman’s in-app coaches are on hand to analyze your food logs with an expert eye and offer intervention suggestions that don’t necessarily require major behavioral changes.

But biohacking your way to better sleep? It’s a notion that’s far more experimental — and seems even more socioeconomic-class dependent — than other types of lifestyle interventions. (And of course very few of us have the wealth of a Bryan Johnson to dedicate to implementing optimal shut-eye schedules.)

Despite this, Ultrahuman is leaning into biohacking sleep. Discussing the recent addition to the Sleep Index — SPO2 — Kumar suggested users could act on a low score for overnight blood oxygen by experimenting with mouth taping, a non-scientifically verified practice than involves taping the mouth during sleep to encourage the body to breathe through the nose instead.

The experimental ‘sleep hack’ went viral in recent years, reportedly after being promoted by TikTok influencers. The claim is it helps retrain the body to breathe through the nose rather than the mouth — promoting deeper and more restorative breathing and oxygenation during the night. However there have been only limited scientific studies into the practice and there’s not enough evidence to confirm whether the technique is really helpful or even entirely safe. (And plenty of doctors have warned against trying it out.)

So while having the SPO2 data-point in the app might be a useful signal for a user to initiate a conversation with their doctor — if they are concerned they might have sleep apnea — it’s not a metric you can necessarily do much with, practically speaking, day-to-day (not unless you’re willing to test out a viral TikTok trend on yourself). So there may be limited value in showing the user a daily percentage score if they can’t really do much to improve it. Tracking trends (up or down) for them is where the app will want to get to.

Zooming out, a more general niggle I had with the Ring’s UX is I often found its messaging contradictory vs the data-points it was reporting — and/or out of step with the real-time reality of what I was doing. The Index scores especially often felt out of sync with how I felt (ie well rested/recovered or not) — or how much I’d recently moved.

For example, drilling down into the Recovery Index one day I was met with a notification that “your resting heart rate is on the lower side today. This indicates better rest and recovery”. However the positive-sounding feedback was displayed directly above a bank of “recovery score contributors” almost all of which were in the red, including “resting heart rate”, specifically — which was listed as “needs attention”. The overall Recovery Score at that moment was also 64 (out of 100) — which in pure numerical terms doesn’t look worth celebrating.

In another visually contradictory instance, the app displayed a score of 100 for the Movement Index one morning (presumably as I’d got a late night walk in). Yet the text below this read: “Your recent movement index trends indicate you’ve been moving lesser than usual. Today’s a new day to get back on track.” (The word “trends” here suggests it’s looking at more than the most recent movement data but the presentation of the two so close together is disjointed and risks being confusing.)

Another example followed a sleep-related notification which informed me of “optimal recovery detected” — along with text that read: “Your HRV is trending higher than the previous night. This is a marker of improved rest and recovery”. Great, you’d think. However the Sleep Index contributors displayed directly below this showed HRV in the red (“needs attention”). So, er…?

The challenge here — aside from the headline one for any health/fitness wearable of intelligently interpreting what the tracked biomarkers actually signify for the user (and suggesting useful lifestyle tweaks or behavioral changes without turning them off) — seems to hinge on balancing how much/granular data to show while also pulling from the data on their behalf to distill and display trends in a way that makes sense based on what the user is experiencing and any other data-points being made available to them in the app.

At times, the Ring tab felt pretty baffling in this regard.

More clearly separating trends-based observations from real-time data-points might help. Even just by putting more visual emphasis on trends vs individual data-points — since, ultimately, trends and smart notifications is where the average user should be directly most of their attention.

But, as discussed, the Ring is still a beta product. So let’s see how this element evolves. (A recent addition by Ultrahuman in this area is emailed “weekly insights” — which it says it hopes will help users “understand their metrics in a longer trend line”.)

Ultrahuman Ring

Image credits: Natasha Lomas/TechCrunch

Bottom line

Health tracking and biohacking is not new in consumer tech terms but in some ways the field still feels like it’s just getting started as the challenge of decoding all the biometric data that sensing wearables are picking up just keeps stepping up.

CGM technology, with its near real-time window onto blood glucose levels, provides an especially fascinating — and relatively recent — addition to the mix. One which holds the promise of powering truly personalized interventions that could move the needle for all sorts of people — in a way that general healthy lifestyle advice, about the benefits of eating well and getting enough exercise, all too often won’t. But it’s also clear that cutting-edge products in the category are still grappling with how best to interpret and present the information they’re tracking. So, at times, the user experience can feel experimental and immature.

Ultrahuman’s platform is no exception — perhaps especially as it took a ‘reverso’ approach which started with CGM hardware and has only now bolted on general fitness tracker, adding a set of more familiar biomarkers to the blood glucose-driven metabolic scoring it started with.

Adding the Ring to its hardware mix may not only serve to widen the appeal of its platform by attracting a more general consumer (who would never be fine firing a CGM into their arm), but could help the startup dial up critical differentiation in the category — by providing it with more data to identify correlations between blood glucose-related inflammation and lifestyle factors. The key will be figuring out how best to package insights into actionable and effective behavioral nudges — interventions that might even be applied more broadly if (or when) blood glucose tracking doesn’t require a semi-invasive CGM… So Ultrahuman’s team has got plenty to keep them busy.

For now, the combo of the Ring plus CGM shows clear flashes of potential for unlocking smarter interventions as we get a tighter understanding of how a person’s lifestyle impacts their metabolism. New features were being introduced over the period I spent with the beta product, with lots more slated to come, so the experience continues to evolve at pace. But in the not too distant future it looks a pretty safe bet that some of the cutting-edge tracking being pioneered by startups like this one will bleed out into the mainstream.

Taking Ultrahuman’s sleep & fitness tracking Ring for a spin by Natasha Lomas originally published on TechCrunch

原文: https://techcrunch.com/2023/02/17/ultrahuman-ring-review/

本站文章系自动翻译,站长会周期检查,如果有不当内容,请点此留言,非常感谢。
  • Abhinav
  • Abigail Pain
  • Adam Fortuna
  • Alberto Gallego
  • Alex Wlchan
  • Anil Dash
  • Answer.AI
  • Arne Bahlo
  • Ben Carlson
  • Ben Kuhn
  • Bert Hubert
  • Big Technology
  • Bits about Money
  • Brandon Skerritt
  • Brian Krebs
  • ByteByteGo
  • Chip Huyen
  • Chips and Cheese
  • Christopher Butler
  • Colin Percival
  • Cool Infographics
  • Dan Sinker
  • David Walsh
  • Dmitry Dolzhenko
  • Dustin Curtis
  • eighty twenty
  • Elad Gil
  • Ellie Huxtable
  • Ethan Dalool
  • Ethan Marcotte
  • Exponential View
  • FAIL Blog
  • Founder Weekly
  • Geoffrey Huntley
  • Geoffrey Litt
  • Greg Mankiw
  • HeardThat Blog
  • Henrique Dias
  • Herman Martinus
  • Hypercritical
  • IEEE Spectrum
  • Investment Talk
  • Jaz
  • Jeff Geerling
  • Jonas Hietala
  • Josh Comeau
  • Lenny Rachitsky
  • Li Haoyi
  • Liz Danzico
  • Lou Plummer
  • Luke Wroblewski
  • Maggie Appleton
  • Matt Baer
  • Matt Stoller
  • Matthias Endler
  • Mert Bulan
  • Mind Matters
  • Mostly metrics
  • Naval Ravikant
  • News Letter
  • NextDraft
  • Non_Interactive
  • Not Boring
  • One Useful Thing
  • Phil Eaton
  • Product Market Fit
  • Readwise
  • ReedyBear
  • Robert Heaton
  • Rohit Patel
  • Ruben Schade
  • Sage Economics
  • Sam Altman
  • Sam Rose
  • selfh.st
  • Shtetl-Optimized
  • Simon schreibt
  • Slashdot
  • Small Good Things
  • Steph Ango
  • Stephen Wolfram
  • Steve Blank
  • Taylor Troesh
  • Telegram Blog
  • The Macro Compass
  • The Pomp Letter
  • thesephist
  • Thinking Deep & Wide
  • Tim Kellogg
  • Understanding AI
  • Wes Kao
  • 英文媒体
  • 英文推特
  • 英文独立博客
©2025 搞英语 → 看世界 | Design: Newspaperly WordPress Theme